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A nuestro querido Domingo Toledo en su cumpleaños 60

Abstract In this article we apply a Bochner type formula to show that on a com-
pact conformally flat riemannian manifold (or half-conformally flat in dimension 4)
certain types of orthogonal almost-complex structures, if they exist, give the absolute
minimum for the energy functional. We give a few examples when such minimizers
exist, and in particular, we prove that the standard almost-complex structure on the
round S6 gives the absolute minimum for the energy. We also discuss the uniqueness
of this minimum and the extension of these results to other orthogonal G-structures.

Keywords Orthogonal almost-complex structure · Conformally flat · Anti-self-dual
metric · Nearly-Kahler
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1 Introduction

Let (M2n, g) be a Riemannian manifold. An orthogonal almost-complex structure on
M is an automorphism of the tangent bundle J : TM → TM which is orthogonal
with respect to g and satisfies J2 = −idTM. The combination (g, J) is also called an
“almost-hermitian structure” on M.

Associated with such a structure is the Kähler form ω = g(J·, ·) (or “J with its
indices lowered by g”) and the energy E(ω), defined for a compact manifold by

E(ω) =
∫

M
‖∇ω‖2vol,
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where ∇ω is the covariant derivative of ω with respect to the Levi-Civita connection
associated with g, and vol is the volume element associated with g.1

A natural problem to consider in this context is that of the critical points of the
energy functional, for a fixed (M, g). In particular, one seeks orthogonal almost-
complex structures J of minimal energy.

For n = 1, i.e., (M, g) an oriented riemannian surface, J is unique (up to a sign) and
E(ω) = 0. For n > 1, E(ω) ≥ 0 with equality if and only if ∇ω ≡ 0, which is the Kähler
condition, i.e., J is integrable and ω is closed.

If (M, g) does not admit a Kähler metric then we do not know in general if a
minimum occurs, let alone its value. However, in case (M, g) is conformally flat (or
“half-conformally-flat” for dim M = 4), we are able to derive a useful sufficient condi-
tion for the existence of an energy minimizing J and a formula for its energy in terms
of the total scalar curvature of g. This is the main result of this paper (Theorem 1).

The key ingredient for the proof is a general Bochner-type formula for orthogonal
G-structures previously published in [12] and [3]. Briefly, we consider the Gray-
Hervella decomposition of ∇ω, i.e., its decomposition into the direct sum of four
Un-irreducible components

∇ω =
4∑

i=1

(∇ω)i,

and the corresponding

E(ω) =
4∑

i=1

Ei(ω),

where

Ei(ω) =
∫

M
‖(∇ω)i‖2vol, i = 1, . . . , 4.

The Bochner-type formula of [3] implies, under the stated condition of conformal
flatness on (M, g), that

2E1(ω) − E2(ω) + (n − 1)E4(ω) = const., (1)

where “const.” is some positive multiple of the total scalar curvature of (M, g).
It follows immediately from Formula (1) that the vanishing of certain components

of ∇ω implies that J is an energy minimizer. In particular, it follows from formula (1)
that the standard orthogonal almost-complex-structure on the 6-sphere S6, equipped
with its standard (round) metric, is an energy minimizer (see Theorem 2). Incidentally,
this result contradicts that of [19], where it is claimed that this structure is not even a
local minimizer.

We notice that our formula (1) and its implications is quite similar to other varia-
tional problems of geometric origin, such as the Yang-Mills equations in dimension 4
and harmonic maps between Kähler manifolds. In these problems, as in ours, there is
a natural decomposition of the “energy” into several components, and one can show
that a certain linear combination of these components is identically constant. It follows

1 Thinking of J as a section of the twistor fibration over M endowed with its natural riemannian
metric, this definition is equivalent to E′(J) = ∫

M ‖dJ‖2; i.e., E′ = aE + b where a, b are a pair of
constants depending only on the dimension of M.
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that structures for which certain components of the energy vanish are absolute min-
ima. In this way one sees that self-dual and anti-self-dual connections on 4-manifolds
(the instantons) form the minima of the Yang-Mills functional, and holomorphic or
anti-holomorphic maps between Kähler manifolds are the minima of the harmonic
map energy (in their homotopy class). Furthermore, in these cases, as in ours, the
condition for being a minimum is a first order differential equation on the structure
in question, whereas the Euler Lagrange equations for general critical points of the
energy are second-order PDE.

In the rest of this article, we first explain how to arrive at Eq. (1) and the precise
conditions under which it applies, and then use formula (1) to give several examples
of orthogonal almost-complex structures that realize the absolute minimum of the
energy.

In the last section of the article we explain how to extend our results to similar
problems of “G-structures with minimal energy”, such as G2 and Spin7 structures.

2 A Bochner formula

Let (M2n, g, J) be an almost-hermitian manifold and ω = g(J·, ·) its associated Kähler
form. We give here a brief review of the results of [3] concerning such structure.

We use the abbreviated notation �k for the bundle of real k forms on M, �p,q for
the bundle of complex forms of type (p, q) and [[�p,q]] for the real forms in �p,q.

In this notation, ω is a section of [[�1,1]], and ∇ω is a section of the bundle
W := �1 ⊗ [[�2,0]]. This bundle decomposes into four subbundles

W = W1 ⊕ · · · ⊕ W4,

the so-called Gray–Hervella decomposition [11], corresponding to the decomposition
into irreducibles of the Un-representation which gives rise to W . We have

• W1 = [[�3,0]];
• W2 = the real part of the image of

(
�1,0)⊗3

under the Young symmetrizer
(1 − (23))(1 + (12));

• W3 = real part of the “primitive” part of �1,2 (kernel of the contraction in the first
and second entries);

• W4 ∼= �1, given by the image of �1, inside of W , of the adjoint of the contraction
W ⊂ �1 ⊗ �2 → �1.

Note . For n = 1, W = 0; for n = 2, W1 = W3 = 0.

Corresponding to the decomposition of W is the decomposition of ∇ω,

∇ω = (∇ω)1 + · · · + (∇ω)4,

i.e., (∇ω)i is a section of Wi, i = 1, . . . , 4. It is important to notice that the irreduc-
ible Un-modules giving rise to Wi are pairwise non-isomorphic, hence the (∇ω)i are
pairwise orthogonal.

The components (∇ω)i carry important geometric information about the almost-
complex structure; for example, J is integrable iff (∇ω)1 = (∇ω)2 = 0, i.e., ∇ω ∈
W3 ⊕W4 (or “J is of type W3 ⊕W4”). The structure is symplectic (dω = 0), or “almost
Kähler”, iff ∇ω ∈ W2 and is nearly Kähler if ∇ω ∈ W1, i.e., ∇ω = dω.
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Now, when M is compact, corresponding to the decomposition of ∇ω is the decom-
position of the energy,

E(ω) = E1(ω) + E2(ω) + E3(ω) + E4(ω),

where

Ei(ω) :=
∫

M
‖(∇ω)i‖2.

In [12] and [3], via two different arguments, the following formula for an arbitrary
(M2n, g, J) was obtained:

2E1(ω) − E2(ω) + (n − 1)E4(ω) = 1
2

∫
M

tr(R, u⊥
n ), (2)

where tr(R, u⊥
n ) means the trace of the (u⊥

n , u⊥
n )-block of the curvature operator R :

�2 = un ⊕ u⊥
n → un ⊕ u⊥

n .

Remarks

• For n = 2, since only the E2 and E4 components exist, i.e., E(ω) = E2(ω) + E4(ω),
the formula reduces to

−E2(ω) + E4(ω) = 1
2

∫
M

tr(R, u⊥
n ).

• As pointed out by the referee, putting together formulae (12) and (23) of [10], one
gets the following pointwise formula:

2
3
‖(dω)(3,0)‖2 − 4‖N0‖2 + ‖θ‖2 + 2δθ = 2(n − 1)

2n − 1
s − 2〈W(ω), ω〉,

where
– dω(3,0) is the component of dω inside W1 = [[�3,0]]; dω(3,0) = (∇ω)1.
– N0 is the component of the Nijenhuis tensor in W2. That is, the Nijenhuis tensor

N can be identified with the projection of ∇ω on W1 ⊕W2, and N0 with (∇ω)2.
– θ = Jδω ∈ �1 is the Lee form, and can be identified with (∇ω)4. In fact, in [3],

it is computed that ‖θ‖2 = ‖δω‖2 = 2(n − 1)‖(∇ω)4‖2.
– One can verify as in [6] that

〈W(ω), ω〉 = 1
2(2n − 1)

[(2n − 1)s∗ − s]

and thus, that the right hand side of the above pointwise formula equals
4tr(R, u⊥

n ).
Integrating the above formula, one obtains (2). Notice that, from this description,
Lemma 1 below follows immediately.

In general, the decomposition �2 = un ⊕ u⊥
n depends on J, hence the same depen-

dence occurs for the right-hand side of the above formula. Nevertheless, when (M, g)

is conformally flat (or half conformally flat in dimension 4), we have the following:

Lemma 1 Let (M2n, g) be a riemannian manifold with Weyl tensor W and an orthog-
onal almost-complex structure J. If
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• n ≥ 3 and W = 0 (i.e. (M, g) is conformally flat), or
• n = 2 and W+ = 0 (i.e. (M, g) is half-conformally flat, or anti-self-dual, using the

orientation induced by J),

then

tr(R, u⊥
n ) = 2n − 2

2n − 1
s,

where s is the scalar curvature.

Proof This is well known (see for example, [10] or [6]), so we give here only a sketch:
by definition, tr(R, u⊥

n ) is a Un-invariant functional on the space of curvature type
tensors. Representation theory tells us that there are two linearly independent such
invariants, but restricted to the space of curvature type tensors with vanishing Weyl
tensor W (or vanishing W+ in dimension 4) there is a unique Un invariant (up to a
constant). The exact value of the constant may be evaluated by computing it on any
example (we used the real hyperbolic 2n-space). ��
Corollary 1 Let (M2n, g) be a compact Riemannian manifold such that

• n ≥ 3 and (M, g) is conformally flat, or
• n = 2 and (M, g) is anti-self-dual.

Then every almost-complex structure J, orthogonal with respect to g, satisfies

2E1(ω) − E2(ω) + (n − 1)E4(ω) = Cg,

where Cg is a constant depending only on the metric g; in fact, Cg = n−1
2n−1

∫
M s, where s

is the scalar curvature of g.

Note . For n = 2, since E1 = 0, the above formula reduces to

−E2(ω) + E4(ω) = Cg.

We now state our main result:

Theorem 1 Let (M2n, g) be a compact Riemannian manifold such that

• n ≥ 3 and (M, g) is conformally flat, or
• n = 2 and (M, g) is anti-self-dual.

Then an orthogonal almost-complex structure J0 on M is an energy minimizer in each
of the following three cases:

1. n = 3 and J0 is of type W1 ⊕ W4.
2. n is arbitrary and J0 is of type W4.
3. n is arbitrary and J0 is of type W2.

Furthermore,

• E(J0) = 1
n−1 Cg in each of the first two cases, E(J0) = −Cg for the third;

• if one of the above types of minimizers exists on (M, g), then any other minimizer is
necessarily of the same type.
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Remarks

1. For n = 2, type W4 means J0 is integrable.
2. For all n ≥ 2, type W2 means the associated Kähler form ω0 is closed, i.e., (M, ω0)

is symplectic.
3. Note that W1 is also of type W1 ⊕ W4, hence for n = 3, a J0 of type W1 is a

minimizer. But the theorem does not exclude in this case the existence of another
minimizer of type W1 ⊕W4 which is not of type W1 (see the example of S6 below).

4. A conformal change of the metric only affects the W4 component of ∇ω (see for
example [11]). Hence any minimizing J0 of the first two types in the theorem is an
energy minimizer with respect to all metrics in the conformal class of g. See more
about this in Sect. 3.5 below.

5. There do exist riemannian manifolds that do not admit almost-complex structures
of the indicated types, thus for them it is not clear if minimizers exist or not (see
the example below of hyperbolic 4-manifolds).

Proof Let J be an arbitrary almost-complex structure orthogonal with respect to g
and let ω, ω0 be the Kähler forms of J, J0 (resp.).

1. If n = 3 and J0 is of type W1 ⊕ W4, then

E(ω) = E1(ω) + E2(ω) + E3(ω) + E4(ω)

≥ E1(ω) − 1
2 E2(ω) + E4(ω)

= Cg/2 = E1(ω0) − 1
2 E2(ω0) + E4(ω0)

= E1(ω0) + E4(ω0) = E(ω0).

2. If n is arbitrary and J0 is of type W4, then

E(ω) = E1(ω) + E2(ω) + E3(ω) + E4(ω)

≥ 2
n−1 E1(ω) − 1

n−1 E2(ω) + E4(ω)

= Cg
n−1 = 2

n−1 E1(ω0) − 1
n−1 E2(ω0) + E4(ω0)

= E4(ω0) = E(ω0).

3. Finally, if J0 is of type W2 (symplectic) then

E(ω) = E1(ω) + E2(ω) + E3(ω) + E4(ω)

≥ −2E1(ω) + E2(ω) − (n − 1)E4(ω)

= −Cg = −2E1(ω0) + E2(ω0) − (n − 1)E4(ω0)

= E2(ω0) = E(ω0).

One can also read out easily from these calculations the exact value of the minimal
energy. For example, for n = 3 and a J0 of type W1 ⊕ W4,

E(ω0) = E1(ω0) + E4(ω0) = E1(ω0) − 1
2

E2(ω0) + E4(ω0) = Cg/2.
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The other cases are handled similarly.
For the last statement of the theorem, notice (for example) that if n = 3 and a J0

of type W1 ⊕W4 exists, then if J is another minimizer we will have equality in the first
inequality above; thus, E2(ω) = E3(ω) = 0 and J is of type W1 ⊕ W4. The other cases
are handled similarly. ��

3 Examples

Here we go through the various classes of minimal energy almost-hermitian structures
indicated in Theorem 1 and try to find non-Kähler examples in each case.

3.1 S6 (n = 3, type W1)

The round 6-sphere has a natural compatible almost-complex structure, JC, given by
Cayley cross-product in R

7 (thought of as imaginary Cayley numbers): at a point
u ∈ S6 and v ∈ TuS6, JC(v) = u × v. It is well known that such structure is nearly
Kähler (i.e., of type W1), and so, according to the previous theorem, realizes the
absolute minimum of the energy among all almost-complex structures orthogonal with
respect to the round metric. Following Remark 4 of the last section we can say a little
more.

Definition 1 Let (M2n, g) be a riemannian manifold. We say that two almost complex
structures J, J0 on M are conformally equivalent if there exists a conformal diffeomor-
phism φ : M → M (φ∗g = eλg) such that J0 = dφ ◦ J ◦ dφ−1.

Then we have:

Theorem 2 Any almost complex structure on S6 which is conformally equivalent to the
Cayley almost complex structure is energy minimizing with respect to all metrics in the
conformal class of the round metric.

Remarks In [5] it has been shown that JC is also a volume minimizer, among all
sections of the twistor fibration.

Concerning the uniqueness of this minimizer we have the following theorem of
Friedrich [7]:

Theorem 3 JC is the unique nearly-Kähler structure on the round S6, up to an isome-
try; i.e., for any almost complex structure J on S6 which is nearly Kähler wrt the round
metric there exists an isometry φ ∈ SO7 such that J = dφ ◦ JC ◦ dφ−1.

Hence JC is the unique (up to an isometry) energy minimizer on the round S6

of type W1. We know from Theorem 1 that any other minimizer should be of type
W1 ⊕ W4, but we do not know if there is actually any one which is not conformally
equivalent to JC.

3.2 Hermitian manifolds (type W4)

3.2.1 Conformal deformations of Kahler manifolds

One way to obtain a non-Kähler hermitian manifold (in fact, of type W4) is to start
with a Kahler manifold and deform its metric conformally (by a non-constant factor).
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This adds a W4 component to ∇ω (see Sect. 3.5 below), hence, if one starts with a
conformaly flat Kähler manifold (or ASD manifold for n = 2), we obtain in this way
a non-Kähler energy minimizer.

Now it turns out that for n ≥ 3, a conformaly flat compact Kähler manifold is in
fact flat [2, 2.68], so these are all the examples of non-Kähler energy minizers we can
obtain by this method for n ≥ 3.

For n = 2, we would like to start with an ASD Kähler manifold and again deform
the metric conformally to obtain an ASD hermitian (non-Kahler) manifold. Now for
a (complex) two-dimensional Kahler manifold the ASD condition is equivalent to the
vanishing of the scalar curvature, and there are many examples of such SFK (“scalar
flat Kahler”) manifolds (see for example [15]).

Interestingly, in case the first Betti number of M is even, a result of Boyer [4] states
that this method is the only way to obtain an ASD hermitian manifold:

if a compact ASD Hermitian manifold has even first Betti number then there is a
conformal change of the metric that transforms it into a Kähler metric of zero scalar
curvature.

For a manifold with odd first Betti number this method clearly cannot work (since
such a manifold cannot admit a Kähler metric), but we have the following examples
of LeBrun [14]:

There exist ASD Hermitian metrics on the k-fold blow-ups

(S1 × S3)#CP2# · · · #CP2.

3.2.2 Hopf manifolds

The product metric on S2n−1 × S1 is conformally flat. This manifold does not admit a
Kähler metric (the first Betti number is odd), but does admit many orthogonal com-
plex structures coming from actions of Z on C

n \ {0} by conformal linear maps. Hence
all of these structures are locally conformally Kähler, i.e., of type W4 (see [18]) and
thus of minimal energy.

3.3 Symplectic manifolds (type W2)

For n ≥ 3, we do not know of any examples of conformally flat, symplectic, non-Kähler
compact manifolds.

For n = 2, we recall Armstrong’s deformation argument [1] to produce examples
of ASD non-Kähler symplectic structures (we thank V. Apostolov for explaining this
to us):

Start with a scalar flat Kähler (SFK) metric (g0, J0) on a four manifold. Such a
metric can be shown to exist on certain complex surfaces; for example, on a blow-up
of a generic ruled complex surface, see [15]. Such a metric is ASD, since, as we have
recalled before, for a Kähler metric ASD is equivalent to scalar flat.

The idea is to show that on such a manifold there are ASD deformations of the
conformal class [g0] admitting symplectic structures which are not Kähler. To this end
we consider two types of deformations:

(a) SFK deformations of (g0, J0).
(b) ASD deformations of the conformal class [g0].
These moduli spaces have been studied by [15] and [13]. Just by comparing their
dimensions we see that (b) is larger than (a) on our manifold. So there are ASD
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classes [g] arbitrarily close to [g0] which are not Kähler. Let us see that such a [g]
admits a compatible symplectic structure. Note first, that on a four-manifold, the con-
dition on a symplectic form ω to be “admitted” by a conformal class [g] is simply that
ω be self-dual wrt [g] (because this implies that ω is the Kähler form associated with
some orthogonal almost complex structure and some metric in the conformal class of
g). Now let η be the harmonic representative, wrt g, of the deRham cohomology class
of ω0, and let ω be the SD part of η. Then ω is still harmonic, thus closed, and SD wrt
g. If g is near g0 then ω is near ω0 and is non-degenerate, hence symplectic.

3.4 Conformal change of the metric

Consider an almost-hermitian manifold (M, g, J), and a conformal change of the met-
ric: thus, set g′ = λg with λ : M → R

+. Note that J is orthogonal wrt g′ as well.
Denoting by ω′ and ∇′ the Kähler form and Levi–Civita connection of the almost-

hermitian manifold (M, g′, J), we have the following relation (see [9] and [11])

∇′ω′ = λ∇ω + ε(λ)

where ε(λ) is a certain tensor in W4 depending on λ and dλ and such that ε(λ) ≡ 0 if
and only if λ is constant. Observe that neither W nor its decomposition W = ⊕ Wi
change under a conformal change of the metric.

We see that there is no immediate relation that can be deduced between the ener-
gies of J with respect to g and g′; in particular, there’s no obvious reason why a J which
has minimal energy for g should still be a minimizer for g′ – even if (g, J) is a Kähler
structure on M.

This motivates the following question: is there a compact manifold M and a confor-
mal class of metrics [g], such that M is Kähler for two different (i.e., non-homothetic)
metrics in [g]?

We do not know the answer to this question in general. However, from Theorem
1 we know that if (M, g, J) is a conformally flat W4-manifold (or ASDH-manifold in
dimension 4, or W1 ⊕ W4 conformally flat manifold in dimension 6), then (M, g′, J) is
still conformally flat (or ASD) and J is of the same type as for g. Thus J will still be of
minimum energy for the new metric g′. This leads to the following well known result.

Corollary 2 Let [g] be the conformal class of a metric on a compact manifold. Assume
that [g] is ASD in dimension 4 or conformally flat in higher dimensions. Then inside of
[g] there is at most one Kähler metric (up to constant multiples).

Proof Suppose (g, J) is Kähler. Then, J has minimal energy (namely 0) wrt g. Let
g′ = λg, for some non-constant λ : M → R

+. Then (g′, J) is of type W4 and hence, by
Theorem 1, J is an energy minimizer wrt g′. Since λ is not constant then ε(λ) is not
zero and so (g′, J) has positive energy. It follows that g′ cannot be Kähler, since this
would imply the existence of a J′ with zero energy wrt to g′. ��
3.5 Hyperbolic 4-manifolds

Let (M4, g) be a compact real hyperbolic 4-manifold. It is known that many of these
admit orthogonal almost complex structures (iff its Euler characteristic is divisible
by four), but cannot admit neither a compatible complex structure [3,10] nor a com-
patible symplectic structure [17]. We do not know whether these manifolds have a
minimizer or not.
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4 G2 and Spin7 structures

A G2-structure on a compact 7-manifold M is given by a certain 3-form φ. All G2-
structures on M compatible with a fixed metric g and orientation are given by sections
of a fibre bundle with fiber SO7/G2 � RP7. We can, again, define the energy of a
G2-structure as the L2-norm of ∇φ.

In this case the formula is (see [3]),

6E1 + 5E7 − E14 − E27 = 2
3

∫
M

s.

Thus any nearly-parallel (i.e., type W1) G2-structure on M7 minimizes energy among
all G2-structures sharing the same metric. For example, the standard G2-structure on
S7 is of type W1 [8], hence is minimal among all G2 structures compatible with the
round metric.

Similarly, if M7 admits a W14 ⊕ W27 G2-structure, that structure will have minimal
energy.

For Spin7-structures the formula reads

6E8 − E48 = 1
6

∫
M

s.

Hence the natural Spin7-structure on S7 × S1 has minimal energy since it is of type
W8 [16].

Acknowledgements We thank V. Apostolov, M. Pontecorvo and S. Simanca for helpful insights as
well as some important references. We are also grateful to the referee for his comments; in particular,
for pointing out that our integral Bochner formula (1) follows from pointwise formulae of P. Gaudu-
chon [10]. G.B and L.H.L acknowledge support from CONACyT grant 46274-F. M.S. acknowledges
support from the following sources: foncyt, Antorchas, ciem (conicet) and secyt (unc).

References

1. Armstrong, J.: Almost Kähler geometry, Ph.D. Thesis, Oxford (1998)
2. Besse, A.: Einstein Manifolds. Springer, Berlin (1987)
3. Bor, G., Hernández-Lamoneda, L.: Bochner formulae for orthogonal G-structures on compact

manifolds. Diff. Geom. Appl. 15, 265–286 (2001)
4. Boyer, C.: Conformal duality and compact complex surfaces. Math. Ann. 274, 517–526 (1986)
5. Calabi, E., Gluck, H.: What are the best almost-complex structures on the 6-sphere?, Differential

geometry: geometry in mathematical physics and related topics, Los Angeles, CA (1990), pp.
99–106, Proc. Sympos. Pure Math., 54, Part 2, Amer. Math. Soc., Providence, RI (1993)

6. del Rio, H., Simanca, S.: The Yamabe problem for almost Hermitian manifolds. J. Geom.
Anal. 13(1), 185–203 (2003)

7. Friedrich, T.: Nearly Kähler and nearly parallel G2-structures on spheres, arXiv:math/0509146v1
[math.DG]

8. Fernández, M., Gray, A.: Riemannian manifolds with structure group G2. Ann. Mat. Pura Appl.
(IV) 32, 19–45 (1982)

9. Falcitelli, M., Farinola, A., Salamon, S.: Almost-Hermitian geometry. Diff. Geom. Appl. 4, 259–
282 (1994)

10. Gauduchon P.: Complex structures on compact conformal manifolds of negative type. In: Ancona,
V. et al. (eds.) Complex Analysis and Geometry, Lect. Notes Pure Appl. Math., vol. 173, pp. 201–
212 (1995)

11. Gray, A., Hervella, L.: The sixteen classes of almost Hermitian manifolds and their linear invar-
iants. Ann. Mat. Pura Appl. 123(4), 35–58 (1980)



Geom Dedicata (2007) 127:75–85 85

12. Hernández-Lamoneda, L.: Curvature vs. almost-Hermitian structures. Geom. Dedicata 79, 205–
218 (2000)

13. King, A., Kotschick, D.: The deformation theory of anti-self-dual conformal structures. Math.
Ann. 294(4), 591–609 (1992)

14. LeBrun, C.: Anti-self-dual Hermitian metrics on blow-up Hopf surfaces. Math. Ann. 289(3), 383–
392 (1991)

15. LeBrun, C., Kim, J., Pontecorvo, M.: Scalar-flat Kähler surfaces of all genera. J. Reine Angew.
Math. 486, 69–95 (1997)

16. Martín Cabrera, F.: On Riemannian manifolda with Spin7-structure. Publ. Math. Debrecen
46, 271–283 (1995)

17. Oguro, T., Sekigawa, K.: Non-existence of almost Kähler structure on hyperbolic spaces of
dimension 2n(≥ 4). Math. Ann. 300(2), 317–329 (1994)

18. Vaisman, I.: On locally conformal almost Kähler manifolds. Israel J. Math. 24, 338–351 (1976)
19. Wood, C.M.: Instability of the nearly-Kähler six-sphere. J. Reine Angew. Math. 439, 205–

212 (1993)


	Orthogonal almost-complex structures of minimal energy
	Abstract
	Introduction
	A Bochner formula
	Examples
	S6 (n=3, type W1)
	Hermitian manifolds (type W4)
	Conformal deformations of Kahler manifolds
	Hopf manifolds
	Symplectic manifolds (type W2)
	Conformal change of the metric
	Hyperbolic 4-manifolds
	G2 and Spin7 structures
	Acknowledgements


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


